Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Infect Dis Ther ; 11(6): 2287-2296, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2094838

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has demonstrated that there is an unmet need for the development of novel prophylactic antiviral treatments to control the outbreak of emerging respiratory virus infections. Passive antibody-based immunisation approaches such as intranasal antibody prophylaxis have the potential to provide immediately accessible universal protection as they act directly at the most common route of viral entry, the upper respiratory tract. The need for such products is very apparent for SARS-CoV-2 at present, given the relatively low effectiveness of vaccines to prevent infection and block virus onward transmission. We explore the benefits and challenges of the use of antibody-based nasal sprays prior and post exposure to the virus. METHODS: The classic susceptible-exposed-infectious-removed (SEIR) mathematical model was extended to describe the potential population-level impact of intranasal antibody prophylaxis on controlling the spread of an emerging respiratory infection in the community. RESULTS: Intranasal administration of monoclonal antibodies provides only a short-term protection to the mucosal surface. Consequently, sustained intranasal antibody prophylaxis of a substantial proportion of the population would be needed to contain infections. Post-exposure prophylaxis against the development of severe disease would be essential for the overall reduction in hospital admissions. CONCLUSION: Antibody-based nasal sprays could provide protection against infection to individuals that are likely to be exposed to the virus. Large-scale administration for a long period of time would be challenging. Intranasal antibody prophylaxis alone cannot prevent community-wide transmission of the virus. It could be used along with other protective measures, such as non-pharmaceutical interventions, to bridge the time required to develop and produce effective vaccines, and complement active immunisation strategies.

2.
Ann Clin Microbiol Antimicrob ; 20(1): 85, 2021 Dec 30.
Article in English | MEDLINE | ID: covidwho-1598520

ABSTRACT

BACKGROUND: There is growing evidence that antibody responses play a role in the resolution of SARS-CoV-2 infection. Patients with primary or secondary antibody deficiency are at increased risk of persistent infection. This challenging clinical scenario is associated with adverse patient outcome and potentially creates an ecological niche for the evolution of novel SARS-CoV-2 variants with immune evasion capacity. Case reports and/or series have implied a therapeutic role for convalescent plasma (CP) to secure virological clearance, although concerns have been raised about the effectiveness of CP and its potential to drive viral evolution, and it has largely been withdrawn from clinical use in the UK. CASE PRESENTATION: We report two cases in which persistent SARS-CoV-2 infection was cleared following administration of the monoclonal antibody combination casirivimab and imdevimab (REGN-COV2, Ronapreve). A 55-year-old male with follicular lymphoma, treated with B cell depleting therapy, developed SARS-CoV-2 infection in September 2020 which then persisted for over 200 days. He was hospitalised on four occasions with COVID-19 and suffered debilitating fatigue and malaise throughout. There was no clinical response to antiviral therapy with remdesivir or CP, and SARS-CoV-2 was consistently detected in nasopharyngeal swabs. Intrahost evolution of several spike variants of uncertain significance was identified by viral sequence analysis. Delivery of REGN-COV2, in combination with remdesivir, was associated with clinical improvement and viral clearance within 6 days, which was sustained for over 150 days despite immunotherapy for relapsed follicular lymphoma. The second case, a 68-year-old female with chronic lymphocytic leukaemia on ibrutinib, also developed persistent SARS-CoV-2 infection. Despite a lack of response to remdesivir, infection promptly cleared following REGN-COV2 in combination with remdesivir, accompanied by resolution of inflammation and full clinical recovery that has been maintained for over 290 days. CONCLUSIONS: These cases highlight the potential benefit of REGN-COV2 as therapy for persistent SARS-CoV-2 infection in antibody deficient individuals, including after failure of CP treatment. Formal clinical studies are warranted to assess the effectiveness of REGN-COV2 in antibody-deficient patients, especially in light of the emergence of variants of concern, such as Omicron, that appear to evade REGN-COV2 neutralisation.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Drug Treatment , Persistent Infection/virology , Aged , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , COVID-19/therapy , Drug Combinations , Female , Humans , Immunization, Passive , Lymphoma, Follicular , Male , Middle Aged , Persistent Infection/drug therapy , SARS-CoV-2 , Treatment Outcome , COVID-19 Serotherapy
3.
Br J Anaesth ; 127(6): 834-844, 2021 12.
Article in English | MEDLINE | ID: covidwho-1377666

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibodies, particularly those preventing interaction between the viral spike receptor-binding domain and the host angiotensin-converting enzyme 2 receptor, may prevent viral entry into host cells and disease progression. METHODS: We performed a systematic review, meta-analysis, trial sequential analysis (TSA), and meta-regression of RCTs to evaluate the benefit of convalescent plasma for COVID-19. The primary outcome was 28-30 day mortality. Secondary outcomes included need for mechanical ventilation and ICU admission. Data sources were PubMed, Embase, MedRxiv, and the Cochrane library on July 2, 2021. RESULTS: We identified 17 RCTs that recruited 15 587 patients with 8027 (51.5%) allocated to receive convalescent plasma. Convalescent plasma use was not associated with a mortality benefit (24.7% vs 25.5%; odds ratio [OR]=0.94 [0.85-1.04]; P=0.23; I2=4%; TSA adjusted confidence interval [CI], 0.84-1.05), or reduction in need for mechanical ventilation (15.7% vs 15.4%; OR=1.01 [0.92-1.11]; P=0.82; I2=0%; TSA adjusted CI, 0.91-1.13), or ICU admission (22.4% vs 16.7%; OR=0.80 [0.21-3.09]; P=0.75; I2=63%; TSA adjusted CI, 0.0-196.05). Meta-regression did not reveal association with titre of convalescent plasma, timing of administration, or risk of death and treatment effect (P>0.05). Risk of bias was high in most studies. CONCLUSIONS: In patients with COVID-19, there was no clear mortality benefit associated with convalescent plasma treatment. In patients with mild disease, convalescent plasma did not prevent either the need for mechanical ventilation or ICU admission. CLINICAL TRIAL REGISTRATION: CRD42021234201 (PROSPERO).


Subject(s)
COVID-19/therapy , Randomized Controlled Trials as Topic/methods , COVID-19/diagnosis , COVID-19/mortality , Humans , Immunization, Passive/mortality , Regression Analysis , Respiration, Artificial/mortality , Respiration, Artificial/trends , Treatment Outcome , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL